Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 12(10)2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2082042

ABSTRACT

The present outbreak of COVID-19 is a worldwide calamity for healthcare infrastructures. On a daily basis, a fresh batch of perplexing datasets on the numbers of positive and negative cases, individuals admitted to hospitals, mortality, hospital beds occupied, ventilation shortages, and so on is published. Infections have risen sharply in recent weeks, corresponding with the discovery of a new variant from South Africa (B.1.1.529 also known as Omicron). The early detection of dangerous situations and forecasting techniques is important to prevent the spread of disease and restart economic activities quickly and safely. In this paper, we used weekly mobility data to analyze the current situation in countries worldwide. A methodology for the statistical analysis of the current situation as well as for forecasting future outbreaks is presented in this paper in terms of deaths caused by COVID-19. Our method is evaluated with a multi-layer perceptron neural network (MLPNN), which is a deep learning model, to develop a predictive framework. Furthermore, the Case Fatality Ratio (CFR), Cronbach's alpha, and other metrics were computed to analyze the performance of the forecasting. The MLPNN is shown to have the best outcomes in forecasting the statistics for infected patients and deaths in selected regions. This research also provides an in-depth analysis of the emerging COVID-19 variants, challenges, and issues that must be addressed in order to prevent future outbreaks.

2.
Sensors (Basel) ; 21(24)2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1554865

ABSTRACT

COVID-19 is a transferable disease that is also a leading cause of death for a large number of people worldwide. This disease, caused by SARS-CoV-2, spreads very rapidly and quickly affects the respiratory system of the human being. Therefore, it is necessary to diagnosis this disease at the early stage for proper treatment, recovery, and controlling the spread. The automatic diagnosis system is significantly necessary for COVID-19 detection. To diagnose COVID-19 from chest X-ray images, employing artificial intelligence techniques based methods are more effective and could correctly diagnosis it. The existing diagnosis methods of COVID-19 have the problem of lack of accuracy to diagnosis. To handle this problem we have proposed an efficient and accurate diagnosis model for COVID-19. In the proposed method, a two-dimensional Convolutional Neural Network (2DCNN) is designed for COVID-19 recognition employing chest X-ray images. Transfer learning (TL) pre-trained ResNet-50 model weight is transferred to the 2DCNN model to enhanced the training process of the 2DCNN model and fine-tuning with chest X-ray images data for final multi-classification to diagnose COVID-19. In addition, the data augmentation technique transformation (rotation) is used to increase the data set size for effective training of the R2DCNNMC model. The experimental results demonstrated that the proposed (R2DCNNMC) model obtained high accuracy and obtained 98.12% classification accuracy on CRD data set, and 99.45% classification accuracy on CXI data set as compared to baseline methods. This approach has a high performance and could be used for COVID-19 diagnosis in E-Healthcare systems.


Subject(s)
COVID-19 , Deep Learning , Telemedicine , Artificial Intelligence , COVID-19 Testing , Delivery of Health Care , Humans , SARS-CoV-2 , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL